ESO-Teleskope beobachten Schwarze Löcher beim Frühstück im kosmischen Morgengrauen
Astronomen haben mit dem Very Large Telescope der ESO Vorräte an kaltem Gas um einige der frühesten Galaxien des Universums herum beobachtet. Diese Gashalos sind die perfekte Nahrung für supermassereiche Schwarze Löcher im Zentrum dieser Galaxien, die heute so aussehen, wie sie vor über 12,5 Milliarden Jahren waren. Diese Reservoirs könnten erklären, wie diese kosmischen Giganten in einer Epoche des Universums, die als kosmische Morgendämmerung bekannt ist, so schnell wachsen konnten.

MUSE beobachtet einen Gashalo, der sich um verschmelzende Galaxien befindet, beobachtet mit ALMA

Künstlerische Darstellung eines entfernten Quasars, der von einem Gashalo umgeben ist
„Wir können nun zum ersten Mal zeigen, dass primordiale Galaxien in ihrer Umgebung genügend Nahrung haben, um sowohl das Wachstum supermassereicher Schwarzer Löcher als auch die erhöhte Sternentstehung zu füttern“, sagt Emanuele Paolo Farina vom Max-Planck-Institut für Astronomie in Heidelberg, Deutschland, der die heute im The Astrophysical Journal veröffentlichte Forschung leitete. „Dies trägt fundamental zur Lösung des Rätsels bei, wie man sich vorzustellen hat, auf welche Weise sich kosmische Strukturen vor mehr als 12 Milliarden Jahren gebildet haben.“
Astronomen haben sich gefragt, wie supermassereiche Schwarze Löcher so früh in der Geschichte des Universums so groß werden konnten. „Die Anwesenheit dieser frühen Geschöpfe mit einer Masse, die mehrere Milliarden Mal so groß ist wie die unserer Sonne, ist ein großes Geheimnis“, sagt Farina, der auch am Max-Planck-Institut für Astrophysik in Garching bei München forscht. Das bedeutet, dass die ersten Schwarzen Löcher, die sich aus dem Kollaps der ersten Sterne gebildet haben könnten, sehr schnell gewachsen sein müssen. Bislang hatten die Astronomen jedoch die „Nahrung der Schwarzen Löcher“ – Gas und Staub – nicht in ausreichender Menge entdeckt, um dieses schnelle Wachstum zu erklären.
Um die Sache noch komplizierter zu machen, zeigten frühere Beobachtungen mit ALMA, dem Atacama Large Millimeter/Submillimeter Array, viel Staub und Gas in diesen frühen Galaxien, die eine schnelle Sternentstehung förderten. Diese ALMA-Beobachtungen deuten darauf hin, dass für die Versorgung eines schwarzen Lochs wenig übrig bleiben könnte.
Um dieses Rätsel zu lösen, verwendeten Farina und seine Kollegen das MUSE-Instrument am Very Large Telescope (VLT) der ESO in der chilenischen Atacama-Wüste, um Quasare zu untersuchen – extrem helle Objekte, die von supermassereichen Schwarzen Löchern angetrieben werden, die im Zentrum gewaltiger Galaxien liegen. Die Studie untersuchte 31 Quasare, die man so sieht, wie sie vor mehr als 12,5 Milliarden Jahren waren, zu einer Zeit, als das Universum noch ein Kleinkind war, nur etwa 870 Millionen Jahre alt. Dies ist eine der größten Stichproben von Quasaren aus dieser frühen Zeit in der Geschichte des Universums, die bislang untersucht wurden.
Die Astronomen fanden heraus, dass 12 Quasare von riesigen Gasspeichern umgeben waren: Halos aus kühlem, dichtem Wasserstoffgas, die sich über 100.000 Lichtjahre von den zentralen Schwarzen Löchern und mit einer milliardenfach höheren Masse als die der Sonne erstrecken. Das Team aus Deutschland, den USA, Italien und Chile fand auch heraus, dass diese Gashalos fest mit den Galaxien verbunden waren und somit die perfekte Nahrungsquelle darstellten, um sowohl das Wachstum supermassereicher Schwarzer Löcher als auch die heftige Sternentstehung zu unterstützen.
Die Forschung war dank der hervorragenden Empfindlichkeit von MUSE, dem Multi Unit Spectroscopic Explorer, am VLT der ESO möglich, von dem Farina sagt, dass er in der Untersuchung von Quasaren „ein entscheidender Faktor“ sei. „In wenigen Stunden pro Objekt konnten wir uns in die Umgebung der massereichsten und unersättlichsten Schwarzen Löcher des jungen Universums begeben“, fügt er hinzu. Während Quasare hell sind, sind die Gasspeicher um sie herum viel schwieriger zu beobachten. Aber MUSE konnte das schwache Glühen des Wasserstoffgases in den Halos erkennen, so dass Astronomen endlich die Lebensmittelvorräte freilegen konnten, die supermassereiche Schwarze Löcher im frühen Universum versorgen.
In Zukunft wird das Extremely Large Telescope (ELT) der ESO den Wissenschaftlern helfen, noch mehr Details über Galaxien und supermassereiche Schwarze Löcher in den ersten wenigen Milliarden Jahren nach dem Urknall zu erfahren. „Mit der Leistungsfähigkeit des ELT werden wir in der Lage sein, noch tiefer in das frühe Universum einzutauchen, um viele weitere solche Gasnebel zu finden“, schließt Farina.
Links
Quelle: https://www.eso.org/public/germany/news/eso1921/?lang