Fernster Quasar mit starken Radiojets entdeckt
Mit Hilfe des Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) haben Astronomen die entfernteste bisher bekannte Quelle von Radioemission entdeckt und im Detail untersucht. Bei der Quelle handelt es sich um einen „radiolauten“ Quasar, ein helles Objekt mit starken Jets, die bei Radiowellenlängen strahlen. Er ist so weit entfernt, dass sein Licht 13 Milliarden Jahre gebraucht hat, um uns zu erreichen. Die Entdeckung könnte wichtige Hinweise liefern, die den Astronomen helfen, das frühe Universum zu verstehen.

Quasare sind sehr helle Objekte, die im Zentrum einiger Galaxien liegen und von supermassereichen schwarzen Löchern angetrieben werden. Wenn das schwarze Loch das umgebende Gas verschlingt, wird Energie freigesetzt, die es den Astronomen ermöglicht, sie selbst dann zu entdecken, wenn sie sich in großer Entfernung befinden.
Der neu entdeckte Quasar mit dem Namen P172+18 ist so weit entfernt, dass sein Licht etwa 13 Milliarden Jahre unterwegs war, bis es uns erreichte: Wir sehen ihn so, wie er war, als das Universum gerade einmal etwa 780 Millionen Jahre alt war. Obwohl schon weiter entfernte Quasare entdeckt wurden, ist dies das erste Mal, dass Astronomen die verräterischen Signaturen von Radiojets in einem Quasar so früh in der Geschichte des Universums identifizieren konnten. Nur etwa 10 % der Quasare, die von den Astronomen als "radiolaut" klassifiziert werden, haben Jets, die bei Radiofrequenzen hell leuchten [1].
P172+18 wird von einem schwarzen Loch angetrieben, das etwa 300 Millionen Mal massereicher als unsere Sonne ist und Gas in atemberaubender Geschwindigkeit vertilgt. „Das schwarze Loch nimmt sehr schnell Materie auf und wächst in seiner Masse mit einer der höchsten jemals beobachteten Raten“, erklärt die Astronomin Chiara Mazzucchelli, Fellow bei der ESO in Chile, die die Entdeckung zusammen mit Eduardo Bañados vom Max-Planck-Institut für Astronomie in Deutschland leitete.
Die Astronomen vermuten, dass es einen Zusammenhang zwischen dem schnellen Wachstum supermassereicher schwarzer Löcher und den starken Radiojets gibt, die in Quasaren wie P172+18 entdeckt wurden. Man nimmt an, dass die Jets in der Lage sind, das Gas um das schwarze Loch herum zu stören und so die Geschwindigkeit zu erhöhen, mit der das Gas hineinfällt. Daher kann die Untersuchung radiolauter Quasare wichtige Erkenntnisse darüber liefern, wie schwarze Löcher im frühen Universum nach dem Urknall so schnell zu ihren supermassereichen Dimensionen heranwuchsen.
„Ich finde es sehr aufregend, zum ersten Mal 'neue' schwarze Löcher zu entdecken und einen weiteren Baustein zu liefern, um zu verstehen, wie das ursprüngliche Universum entstanden ist, woher wir kommen und letztlich uns selbst“, sagt Mazzucchelli.
P172+18 wurde von Bañados und Mazzucchelli am Magellan-Teleskop am Las-Campanas-Observatorium in Chile erstmals als weit entfernter Quasar erkannt, nachdem er zuvor als Radioquelle identifiziert worden war. „Sobald wir die Daten bekamen, haben wir sie mit dem Auge inspiziert, und wir wussten sofort, dass wir den fernsten bisher bekannten radiolauten Quasar entdeckt hatten“, sagt Bañados.
Aufgrund der kurzen Beobachtungszeit hatte das Team jedoch nicht genug Daten, um das Objekt im Detail zu untersuchen. Es folgte eine Reihe von Beobachtungen mit anderen Teleskopen, unter anderem mit dem X-Shooter-Instrument am VLT der ESO, die es ihnen ermöglichten, die Eigenschaften dieses Quasars genauer zu erforschen. Dazu gehörte auch die Bestimmung von Schlüsseleigenschaften wie der Masse des schwarzen Lochs und der Geschwindigkeit, mit der es Materie aus seiner Umgebung aufsammelt. Andere Teleskope, die zu der Studie beigetragen haben, sind das Very Large Array des National Radio Astronomy Observatory und das Keck Telescope in den USA.
Während sich das Team über ihre Entdeckung freut, die in The Astrophysical Journal erscheinen wird, gehen sie davon aus, dass dieser radiolaute Quasar der erste von vielen sein könnte, die vielleicht in noch größeren kosmologischen Entfernungen gefunden werden. „Diese Entdeckung macht mich optimistisch und ich glaube – und hoffe – dass der Entfernungsrekord bald gebrochen werden wird“, sagt Bañados.
Beobachtungen mit Geräten wie ALMA, an denen die ESO beteiligt ist, und mit dem kommenden Extremely Large Telescope (ELT) der ESO könnten helfen, weitere dieser Objekte aus der Frühzeit des Universums zu entdecken und im Detail zu untersuchen.
Weitere Informationen und Quelle unter: https://www.eso.org/public/germany/news/eso2103/?lang